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1. Introduction

4-axis measuring devices including coordinate measuring
machines (CMM), gear measuring instruments (GMI), form testers,
etc. are versatile instruments, used for geometry measurements.
As key components, the rotary tables (Fig. 1(a) ) provide a quick
rotary positioning of components to assess measurands.

Although the performance of rotary tables has been improved
dramatically by numerous efforts in design and production, there
still exist non-trivial and undesired error motions, originating from
the drive train, bearings, rotary encoder, etc.

Compared with mature error mapping techniques for three-axis
measuring devices, error determination and compensation of rotary
tables are still under development. In many cases, only the angular
positioning deviation is corrected by the instrument manufacturers.

To calibrate all six error motions [1] (Fig. 1(b)), the classic
method requires a rather sophisticated setup, which includes
precision spheres, a polygonal mirror, LVDTs and an autocollimator
[2]. A double ball-bar [3–5] is used to calibrate the two tilt error
motions and the three translational error motions of the B- and C-
axes in 5-axis CNC machines. Another promising method takes
advantage of an existing 3-axis measuring device and uses a
circular ball plate artifact (Fig. 1(c)), which significantly simplifies

This paper presents a new solution, which comple
decouples the error motions of the rotary table from th
deviations, originating from the CMM and from the ball p
artifact. Closure theory and approximation techniques are in
duced to identify and quantify the error motions, based
obtained point clouds. A mathematical model is developed, wh
covers all the deviation sources, occurring at the movement 

rotary axis. Simulations and experimental results verify 

validate the solution. Based on the mathematical model, 

paper presents a new evaluation procedure enabling an e
mapping and the corresponding compensation of deviati
occurring at rotary tables/axes. The required experimental se
is comparably simple and flexible.
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Fig. 1. Error mapping for rotary tables: (a) design schematic (b) six error motio
rotary table, including three translational terms dx, dy and dz, two tilt terms ex an
and one angular positioning deviation ez (c) ball plate artifact.
the measurement setup [6]. However, without effectively separat-
ing the error motions from the deviations of the 3-axis measuring
device, the calibration uncertainty is not satisfactory.
tion
t to
the
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2. Methodology

2.1. Closure theory

Although 3-axis CMMs are flexible and efficient for produc
metrology, the accuracy even of high-end CMMs is not sufficien
calibrate an artifact. To minimize the CMM’s deviations at 
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syste
surement of a rotational symmetric artifact with N features
ally spheres), the multiple orientation/measuring technique
canbeapplied,based onanN-steprepeatedmeasurement.Here,
orkpiece is rotated manually by 360�/N per step and all features
easured at each step. The angular deviations of the workpiece

CMM can be separated according to the closure theory. In the
e-rosette method [8], a rotary table was introduced to rotate the
kpiece. The N � N deviation values were filled into a table with N
s (one for each rotary position) and N columns (one for each
re). Averaging the rows, columns and diagonals separates the
lar deviations of rotary table, workpiece and CMM. The three-
tte method is one option for the calibration of rotary tables.

Mathematical model

 mathematical model (Fig. 2) was developed for feasibility
ies. The measured center (Pm) of a sphere given in the frame
dinate system (CS) is described by Eq. (1). In Eq. (1), the
cripts W, C and F denote the workpiece CS, the rotary table CS
the frame CS, respectively. S½ �W denotes the actual position of a
re by superimposing the nominal coordinates with deviations.
matrix RWC describes the 3D rotation from the artifact to the
ry table. It contains the artifact’s tilt deviations eAx and eAy.
�C ¼ Hx; Hy; 0

� �
C represents the eccentricity of the artifact’s

er, relative to the real axis of rotation of the rotary table. The
tion matrix RCF contains the rotary table’s tilt error motions ex
ey, as well as the angular positioning deviation ez. The vector�
F consists of the translational error motions dx, dy and dz. TC½ �F
ector from the origin of the frame CS to the origin of the rotary
e CS.

F ¼ RCF HW½ �C þ RWC S½ �W
� �þ DC

� �
F þ TC½ �F þ DPs

� �
F

þ DPr
� �

F þ DPp
� �

F ð1Þ

rror mapping of a rotary table requires a sufficient sample
ity per cycle. Therefore, the angular step is reduced to 360�/M.

 a multiple of N, which denotes the number of spheres. After
complete rotation of the ball plate, each of the N spheres has

 positioned once near each of the M defined measuring
tions. The CMM’s deviations in this mathematic model can be
lified significantly. The required efforts in terms of both
ufacturing of the artifact and experimental setup are limited:
he radial, pitch and axial deviations of each sphere of the ball
e should be less than 100 mm [9]; (2) the artifact should be
ered on the table within 100 mm range. In this case, the M � N
re centers are within 1 mm range around the corresponding

Based on Eq. (1), pure formula derivations following the
three-rosette method were carried out. Three tables were used
for error calculations in radial, angular and axial directions,
leading to several results, which did not fully meet the goals
stated in Section 1. The major deficit was that not all the error
motions and deviations originating from the rotary table, the
CMM and the ball plate could be separated satisfactorily without
additional assumptions or experimental restrictions. Therefore,
within the approach presented here, the three-rosette method is
used to determine the CMM’s systematic deviations and to find
reasonable starting values for the approximation algorithm
(Section 2.3).

2.3. New solution

Based on this mathematical model (Section 2.2), a new solution
is proposed to separate the six error motions of rotary table from
the ball plate deviations and the CMM’s systematic deviations. In
the first step, the CMM’s systematic deviations

DPs
� � ¼ DPsa; DPsr; DPsz

� �
at each measuring position are sepa-

rated with the three-rosette method. The subscripts a, r and z denote
the angular, radial and axial directions, respectively. Then, the
measured data is corrected using these systematic deviations of the
CMM. The non-repeatable deviations DPr

� � ¼ DPra; DPrr; DPrz
� �

and
DPp
� � ¼ DPpa; DPpr; DPpz

� �
are minimized later.

In the second step, since the deviations of the artifact in angular
and axial direction follow the closure theory, the rotary table’s
error motions dz and ez are determined by the three-rosette
method as well. The order of the first two steps cannot be reversed.

In the third step, the artifact center is tracked to determine the
error motions dx. Because dx is periodic, one trigonometric
polynomial [10] (Eq. (2)) is approximated to the movement of
the artifact center along the x-axis. The first order terms a1.c and a1.s
give the eccentricity of the artifact, while the other terms am.c, am.s,
an.c and an.s, with m � 2 and n � 2, denotes the coefficients of the
trigonometric terms for dx. The approximation technique delivers
three partial solutions at once: determining the unknown
eccentricity of the artifact; generating an error map; minimizing
the influence of the non-repeatable deviations of the CMM. dy is
determined in the same way. In the fourth step, a similar approach
determines the tilt error motions ex and ey, based on a least squares
approximation of the artifact’s normal direction (perpendicular to
the plane formed by the spheres).

poly ¼ S
N1

m¼1
am:ccos muð Þ þ am:ssin muð Þ½ �

þ S
N2

n¼2
an:ccos

u
n

� �
þ an:ssin

u
n

� �� 	
ð2Þ

3. Numerical simulation

Numerical simulations were performed based on the mathe-
matical model to verify the proposed solution. Simulated data of
sphere centers was generated with given deviation values of the
CMM, rotary table and artifact. Then, the simulated data was
processed to separate the deviations from different sources.

2. Developed mathematical vector model illustrating the chain coordinate
m (CS) from the frame CS (CMM) to the sphere center.
suring positions. Consequently, it appears reasonable to
me that the CMM’s systematic deviations are constant within
range around one ideal measuring position, where N different
res centers were measured. In that case, the superimposed
ations of the probing system and 21 deviations of CMM
eways are replaced by three vectors: DPs

� �
, DPr
� �

and DPp
� �

.
s
�
denotes the systematic deviations and DPr

� �
denotes the

hastic deviations, respectively, of length measurement from
artifact center to one sphere center. DPp

� �
represents the non-

atable deviations of the sphere center, originating from the
ing deviations.
3.1. Simulation inputs

The input values of a circular ball plate (Ø 400.0 mm) with
12 spheres (Ø 30.0 mm) are described in Fig. 3 and Table 1. By
selecting M = 48 (see Section 2.2), the angular step of ball plate’s
rotation was 7.5� for three continuous cycles. The systematic
components of the vector DPs

� �
were selected randomly from the

interval 0:5 � �EL;MPE þ R0;MPL; EL;MPE � R0;MPL
� �

, while the statistic
components of the vector DPr

� �
followed Gaussian distributions

within 0:5 � �R0;MPL; R0;MPL
� �

. EL denotes length measurement
error, while the subscript MPE stands for maximum permissible
2
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error [11]. R0 denotes the repeatability range of length measure-
ment, while the subscript MPL standards for the maximum
permissible limit. EL,MPE = 1:8 þ L=500ð Þ mm and R0,MPL = 0.6 mm
were obtained from the data sheet of a Leitz CMM. The statistic
component DPp

� �
followed a random distribution within

�0.15 mm, assuming that the sphere center is calculated by
probing 15 points on one sphere [12]. Systematic error motions of
the rotary table had spectral components up to the eighth order.
Other key inputs can be found in Section 3.2.

3.2. Simulation results

First, the CMM’s systematic deviations at 48 measuring positions
were separated, as interpreted in Fig. 4. The residuals primarily
resulted from statistic components of the deviations DPr

� �
and

DPp
� �

. After correcting the simulated data by the CMM’s systematic
deviations, the error motions of the rotary table were determined
(Fig. 5). Trigonometric polynomials were approximated to data
from 3 full cycles to ascertain the error motions in one cycle. The
simulation outputs (yellow dots) matched the corresponding
inputs (blue solid curves) very well. Angular steps of 7.5� seem to
be sufficient to characterize the input error motions. The
maximum residuals were not larger than 0.04 mm for the
translational error motions and 0.0300 for the tilt and angular
positioning error motions.

Compared with its nominal position, each sphere usually
shows a two-digit micrometer deviation. This primarily resulted
from two groups of sources: (i) imperfect fabrication of base plate
and assembly of the artifact; (ii) clamping force and imperfect
centering of the artifact. Deviations of the first type can be pre-
determined by using a more accurate measuring device. Devia-
tions of the second type can only be determined in situ, but even a

high-end 3-axis CMM is not sufficient to accomplish the t
alone. The three-rosette method is a good option, since the CM
systematic deviations are neutralized. The proposed solution 

decouples the eccentricity of the artifact (Table 1) from the ra
and angular position deviations of spheres. Therefore, a v
precise centering of the artifact is not necessary.

4. Experiments

Experiments were conducted at the UNC Charlotte and at
University of Bremen to calibrate an aerostatic and a hydrost
rotary table, respectively.

4.1. Experimental setup

Experiments (Fig. 6(a) ) at the UNC Charlotte used a Leitz PM
F, an aerostatic rotary table and a stacked double-plate artifac
400.0 mm, 12 spheres) (Fig. 6(b)). The lower plate functioned 

base layer to isolate clamping forces. Therefore, the upper p
was freed from the resulting distortion. The outer cylindr
surface assisted the centering of the lower plate. Maxw
kinematic coupling allowed the full constraint and a qu
alignment of the upper plate. Countersinks reduced the posi
deviations of spheres due to assembly. Spheres were secured
the plate with short pins and 5-min epoxy.

Once fabricated and assembled, the double-plate artifact 

centered and fixed on the rotary table. Stability of the arti
(especially curing of the glue) was monitored by measuring 

coordinates of all the spheres continuously (the table was
stationary condition). After one week, the coordinates of ev
sphere varied within �0.2 mm in a period of 24 h, indicating 

the artifact reached an equilibrium status. The artifact’s temp
ture drift was less than 0.1 �C in the same period. The result 

revealed that the CMM had constant systematic deviations at
positions of 12 spheres and low non-repeatable deviations
length measurement.

Experiments (Fig. 7(b) ) at the University of Bremen used a L
PMM-F, a hydrostatic rotary table and a single-plate artifact
200.0 mm). The artifact also reached the equilibrium status be
the experiments.

Fig. 3. Simulation inputs and outputs of sphere position deviations.

Table 1
Simulated deviations of the ball plate artifact.

Deviation Parameter Input Output Residual

Eccentricity Hx 24.000 mm 23.996 mm �0.004 mm

Hy �18.000mm �17.992 mm 0.008 mm

Tilt eAx 1.02300 1.01700 �0.00600

eAy 6.46000 6.46100 0.00100

Fig. 5. Simulation inputs and outputs of the rotary table’s error motions
Fig. 4. Simulation inputs and outputs of the CMM’s systematic deviations along the
x-, y- and z-axes at the 48 measuring positions.

Fig. 6. Experimental setup at the UNC Charlotte: (a) entire system (b) double-plate
artifact.

3
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Calibration procedure

he same experimental procedures were conducted in both
ratories. After a warm-up routine, the rotary table was rotated
ultiple cycles in the counter-clockwise (CCW) direction in

s of 7.5� (M = 48). At each step, 15 points were taken on each of
#1, #3, #5, #7, #9, #11 spheres (N = 6).
he determined CMM’s deviations at the 48 measuring
tions are presented in Fig. 8. Small discrepancy in multiple
es proved the consistent performance of both CMMs.

Experimental results: hydrostatic rotary table

ig. 9 shows the separated six error motions at sampled rotary
tions, when the table was rotated in three continuous cycles. dx
a period of 2p, which matches the characteristic of rotary tables
loying external-pressurized bearing systems like hydrostatic
ings. The maximum deviation of 0.17 mm in three cycles reflects
table performance of the rotary table. Similar phenomena were
rved for dy, ex, ey and ez. However, dZ did not have a fully
atable pattern in multiple cycles, which may result from the
ness variation of the thin oil film employed by the hydrostatic
ing. It is much more difficult to control the temperature of a
ostaticbearingthantheone ofanaerostaticbearing,becausethe

 generated in the bearing cannot be dissipated easily in such an
osed system. Nevertheless, the peak amplitude of 0.3 mm will

 a minor effect in most applications of production metrology.

4.3. The dx had a non-integer period (around 1.8p). Therefore, this
plot was left out in Fig. 10, because the superposition of two non-
periodic cycles would give a confusing image. The non-integer
period may result from the drive and transmission trains. The tilt
error motions ex and ey and the angular positioning deviation ez
were less than �0.1500 for both rotary tables, which is satisfactory.

Summary and future work

This paper presents a new error mapping solution, which
decouples the error motions of the rotary table/axis from the
deviations originating from the CMM and from the ball plate
artifact. The closure theory and approximation techniques are
introduced. A mathematical model is developed. Simulations and
experimental results verify the solution. It is promising to apply
this solution for error mapping in production metrology. Future
work will include investigations in both rotating directions (CCW
and CW) as well as influences of load conditions (varying
workpiece masses, eccentric clamping) on the error motions.
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